Online Convex Optimization An overview of algorithms and techniques

Fan Yao, University of Virginia

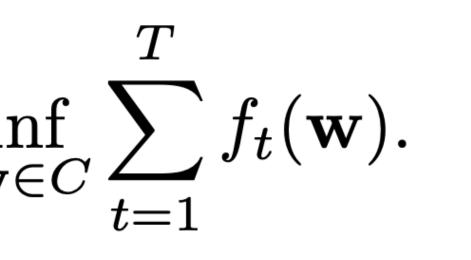
Outline

- Problem Set-up
- Follow the Regularized Leader (FTRL)
- Online Projected Sub-gradient Descent (PSGD)
- Exponentiated gradient (EG)
- EXP-3 and it's variants
- Online Mirror Descent (OMD)
- Dual Averaging (DA)

Set-Up Online Convex Optimization Problem

- Convex set C.
- For t = 1 to T do
 - predict $\mathbf{w}_t \in C$.
 - receive convex loss function $f_t : C \to \mathbb{R}$.
 - incur loss $f_t(\mathbf{w}_t)$.
- Regret of algorithm \mathcal{A} :

$$R_T(\mathcal{A}) = \sum_{t=1}^T f_t(\mathbf{w}_t) - \inf_{\mathbf{w} \in C}$$



Set-Up **Online Convex Optimization Problem**

- Convex set C.
- For t = 1 to T do
 - predict $\mathbf{w}_t \in C$.
 - receive convex loss function $f_t \colon C \to \mathbb{R}$.
 - incur loss $f_t(\mathbf{w}_t)$.
- Regret of algorithm \mathcal{A} :

$$R_T(\mathcal{A}) = \sum_{t=1}^T f_t(\mathbf{w}_t) - \inf_{\mathbf{w} \in C}$$

T $\sum f_t(\mathbf{w}).$ t=1

Remarks:

- 1. In addition to convexity, Lipschitz continuity is
 - often assumed for f_t .
- 2. It is standard convex optimization if all f_t takes the same form.
- 3. It is also common to use l_{t} to refer to the loss function. We will use the notations

 $l_t(x_t) \leftrightarrow f_t(w_t)$ interchangeably.

Feedback Assumptions

- Full information Given f_t , optimizer can evaluate $f_t(w), \forall w \in C$
- Bandit information
 - First order feedback Given f_t , optimizer can evaluate $f_t(w_t)$, $\nabla f_t(w_t)$
 - Zeroth order feedback Given f_t , optimizer can only evaluate $f_t(w_t)$

Feedback Assumptions

- Given f_t , optimizer can evaluate $f_t(w), \forall w \in C$ Full information
- Bandit information
 - First order feedback Given f_t , optimizer can evaluate $f_t(w_t)$, $\nabla f_t(w_t)$
 - Zeroth order feedback Given f_t , optimizer can only evaluate $f_t(w_t)$

Under different feedback assumptions, we are interested in developing noregret learning algorithms, i.e.,

- $R_T(\mathscr{A}) = o(T).$

Full Information Feedback

Follow the Leader (FTL)

In the full information feedback setting, FTL could be a plausible choice:

$$x_{t+1} \in \arg\min_{x \in C} \sum_{s=1}^{t} l_s(x)$$

(FTL update rule)

Follow the Leader (FTL)

In the full information feedback setting, FTL could be a plausible choice:

$$x_{t+1} \in \arg\min_{x \in C} \sum_{s=1}^{t} l_s(x)$$

However, FTL has O(T) regret even for linear loss functions:

$$\ell_t(x) = \begin{cases} -x/2 \\ x \\ -x \end{cases}$$

(FTL update rule)

for *t* = 1, if *t* > 1 is even, if *t* > 1 is odd.

Follow the Leader (FTL)

In the full information feedback setting, FTL could be a plausible choice:

$$x_{t+1} \in \arg\min_{x \in C} \sum_{s=1}^{t} l_s(x)$$

However, FTL has O(T) regret even for linear loss functions:

$$\ell_t(x) = \begin{cases} -x/2 \\ x \\ -x \end{cases}$$

• FTL is too aggressive. Need to impose restrictions on $\{x_t\}$ to avoid jiggling.

(FTL update rule)

for *t* = 1, if *t* > 1 is even, if *t* > 1 is odd.

Follow the Regularized Leader (FTRL)

• Solution: introducing a regularization term h(x):

$$x_{t+1} \in \arg\min_{x \in C} \left\{ \sum_{s=1}^{t} l_s(x) - \sum_{s=1}^{t} l_s(x) - \sum_{s=1}^{t} l_s(x) - \sum_{s=1}^{t} l_s(x) \right\}$$

 $+\frac{1}{\gamma}h(x)$. (FTRL update rule)

Follow the Regularized Leader (FTRL)

• Solution: introducing a regularization term h(x):

$$x_{t+1} \in \arg\min_{x \in C} \left\{ \sum_{s=1}^{t} l_s(x) + \frac{1}{\gamma} h(x) \right\}. \qquad (FTRL \ update \ rule)$$

• h(x) is continuous and strongly conv

 $[\lambda h(x') + (1-\lambda)h(x)] - h(\lambda x)$

for all $\lambda \in [0,1], x, x' \in C$.

Vex, i.e.,
$$\exists K > 0, s . t$$
.
 $x' + (1 - \lambda)x) \ge \frac{K}{2}\lambda(1 - \lambda) ||x' - x||^2$

Regret of FTRL [Shalev-Shwartz, 2007]

the depth of h over C. Then, the regret of FTRL can be bounded by

• If h(x) is continuous and strongly convex, and each l_t is convex and Lipschitz continuous with universal Lipschitz constant L, $H = \max h(x) - \min h(x)$ is $x \in C$ $x \in C$

 $R_T(\text{FTRL}) \leq 2L\sqrt{(H/K)T}$.

Regret of FTRL [Shalev-Shwartz, 2007]

- If h(x) is continuous and strongly convex, and each l_t is convex and Lipschitz
 - the depth of h over C. Then, the regret of FTRL can be bounded by

Remarks:

- 1. FTL and FTRL are closely related to the learning policies known in economics and game empirical history of play of one's opponents.
- 2. Our assumptions: the optimizer has full information access to the loss functions, and the minimization sub-problem can be solved efficiently.

continuous with universal Lipschitz constant L, $H = \max h(x) - \min h(x)$ is $x \in C$ $x \in C$

 $R_T(\text{FTRL}) \leq 2L\sqrt{(H/K)T}$.

theory as fictitious play (FP) and smooth fictitious play (SFP), respectively. These policies correspond to playing a best response (resp. regularized or smooth best response) to the

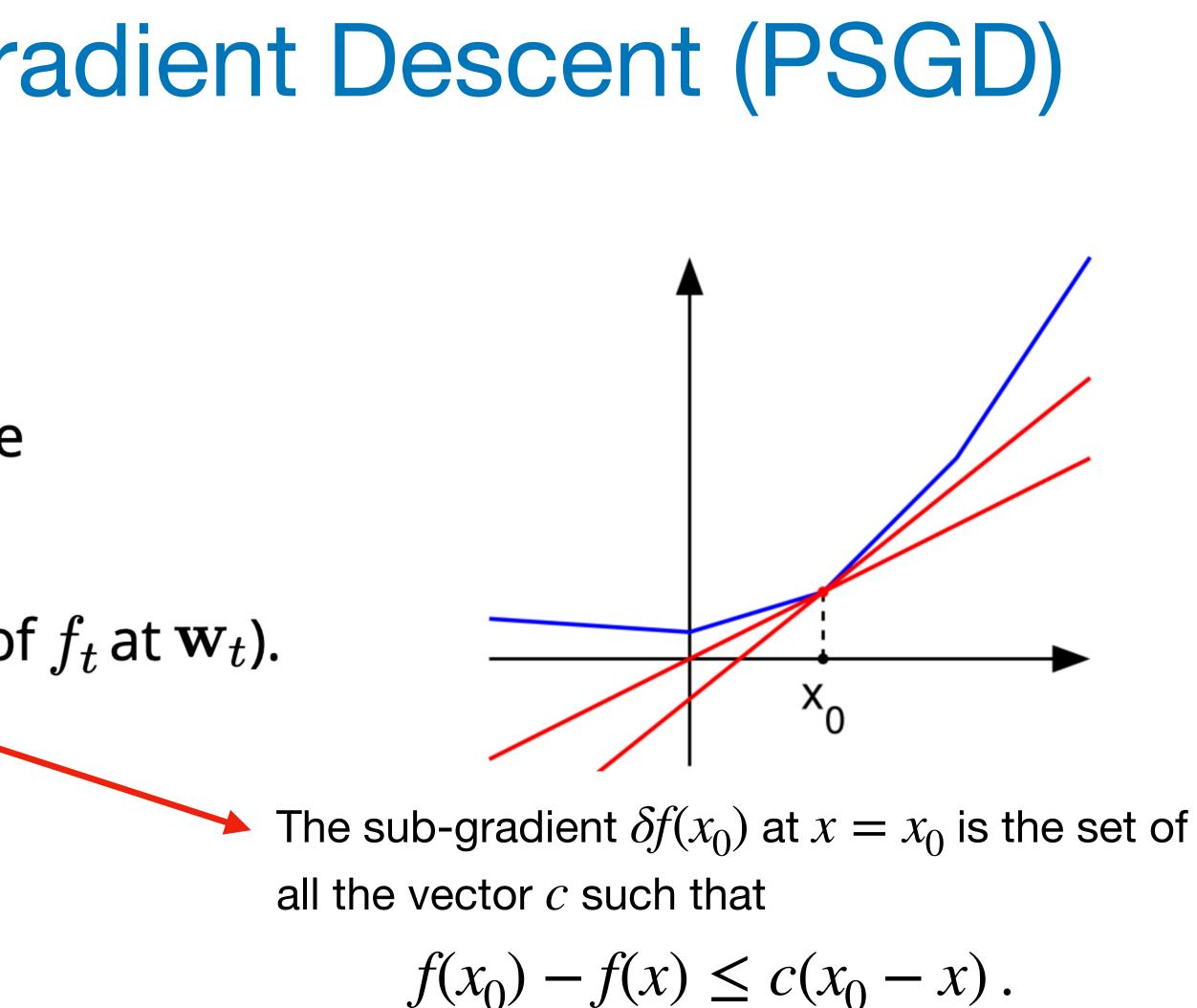
First-order Feedback

Online Projected Sub-gradient Descent (PSGD)

- Algorithm:
 - $\mathbf{w}_1 \in C$ arbitrary.
 - $\mathbf{w}_{t+1} = \prod_C [\mathbf{w}_t \eta \, \delta f_t(\mathbf{w}_t)]$, where
 - Π_C is the projection over C.
 - $\delta f_t(\mathbf{w}_t) \in \partial f_t(\mathbf{w}_t)$ (sub-gradient of f_t at \mathbf{w}_t).
 - $\eta > 0$ parameter.

Online Projected Sub-gradient Descent (PSGD)

- Algorithm:
 - $\mathbf{w}_1 \in C$ arbitrary.
 - $\mathbf{w}_{t+1} = \prod_C [\mathbf{w}_t \eta \, \delta f_t(\mathbf{w}_t)]$, where
 - Π_C is the projection over C.
 - $\delta f_t(\mathbf{w}_t) \in \partial f_t(\mathbf{w}_t)$ (sub-gradient of f_t at \mathbf{w}_t).
 - $\eta > 0$ parameter.

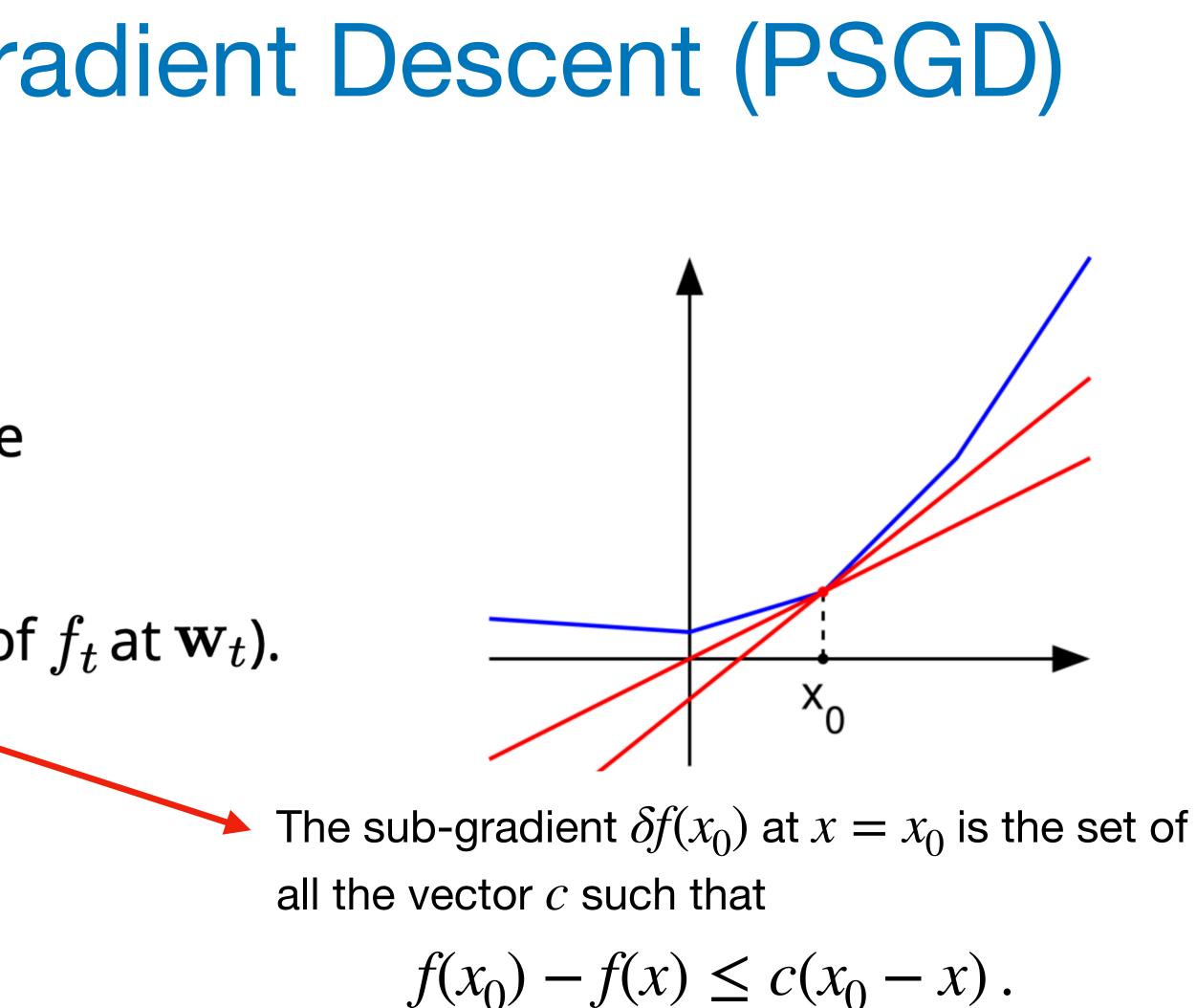


Online Projected Sub-gradient Descent (PSGD)

- Algorithm:
 - $\mathbf{w}_1 \in C$ arbitrary.
 - $\mathbf{w}_{t+1} = \prod_C [\mathbf{w}_t \eta \, \delta f_t(\mathbf{w}_t)]$, where
 - Π_C is the projection over C.
 - $\delta f_t(\mathbf{w}_t) \in \partial f_t(\mathbf{w}_t)$ (sub-gradient of f_t at \mathbf{w}_t). • $\eta > 0$ parameter.

In almost all cases, the projection function in PSGD is the Euclidean projector

$$\Pi_C(x) = \arg\min_{x' \in C} \|x' - x\|^2.$$



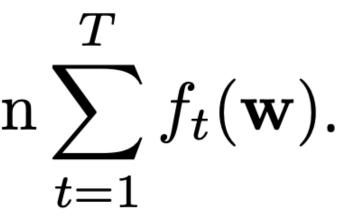
Regret of PSGD [Zinkevich, 2009]

- Assumptions:
 - $\|\mathbf{w}_1 \mathbf{w}^*\| \leq R$ where $\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w} \in C} \sum_{t=1}^{t} f_t(\mathbf{w})$. • $\|\delta f_t(\mathbf{w}_t)\| \leq G$.
- Theorem: the regret of online projected sub-gradient descent (PSGD) is bounded as follows

$$R_T(PSGD) \le \frac{R^2}{2\eta} + \frac{\eta G}{2\eta}$$

Choosing η to minimize the bound gives

$$R_T(PSGD) \le RG\sqrt{T}.$$



 T^2T

STr(We) $: N \mathcal{F}_{t}(w_{\star}) | I$ € 6 f(x) - f(y)SG(X-J)

Regret of PSGD [Zinkevich, 2009]

- Assumptions:
 - $\|\mathbf{w}_1 \mathbf{w}^*\| \leq R$ where $\mathbf{w}^* \in \operatorname{argmin}$ $\mathbf{w} \in C$ • $\|\delta f_t(\mathbf{w}_t)\| \leq G$.
- Theorem: the regret of online projected sub-gradient descent (PSGD) is bounded as follows

$$R_T(PSGD) \le rac{R^2}{2\eta} + rac{\eta G}{2\eta}$$

Choosing η to minimize the bound gives

$$R_T(\mathrm{PSGD}) \leq RG\sqrt{T}.$$

$$n\sum_{t=1}^{T} f_t(\mathbf{w}).$$

 G^2T

2

\longrightarrow The same $O(\sqrt{T})$ bound as FTRL

Proof

The proof uses the definition of subgradient and the property of projection:

$$R_{T}(\text{PSGD}) = \sum_{t=1}^{T} \left(f_{t}(\mathbf{w}_{t}) - f_{t}(\mathbf{w}^{*}) \right)$$

$$\leq \sum_{t=1}^{T} \delta f_{t}(\mathbf{w}_{t}) \cdot (\mathbf{w}_{t} - \mathbf{w}^{*})$$

$$= \sum_{t=1}^{T} \frac{1}{2\eta} \left[\|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2} \right] + \eta^{2} \|\delta f_{t}(\mathbf{w}_{t})\|^{2}$$

$$\leq \sum_{t=1}^{T} \frac{1}{2\eta} \left[\|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2} \right] + \eta^{2} G^{2} - \|\mathbf{w}_{t+1}\|^{2}$$

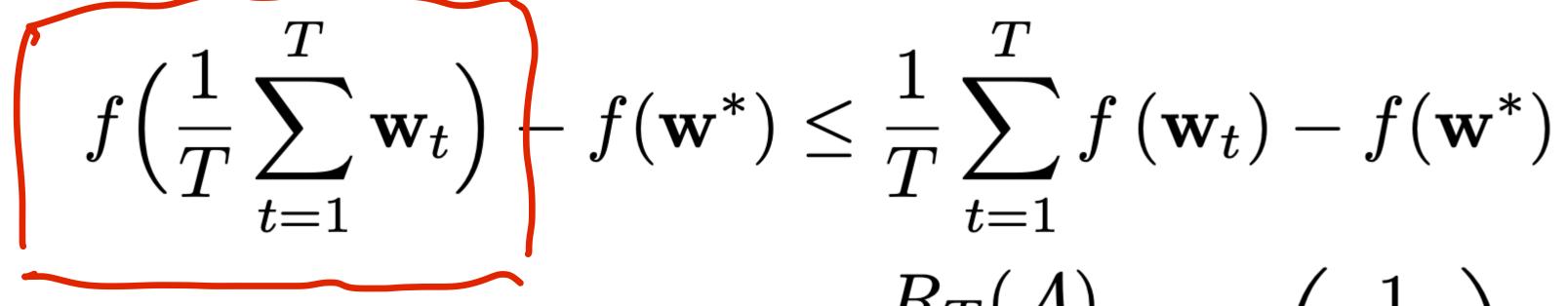
$$\leq \frac{1}{2\eta} \left[\|\mathbf{w}_{1} - \mathbf{w}^{*}\|^{2} \right] + \eta^{2} G^{2} T - \|\mathbf{w}_{T+1}\|^{2}$$

$$\leq \frac{1}{2\eta} \left[\|\mathbf{w}_{1} - \mathbf{w}^{*}\|^{2} \right] + \eta^{2} G^{2} T - \|\mathbf{w}_{T+1}\|^{2}$$

$\overline{\left(\left(w_t - w_t^* \right)^2 + \frac{4}{3} \right)^2}$ (def. of subgrad.) $- \|\mathbf{w}_t - \eta \delta f_t(\mathbf{w}_t) - \mathbf{w}^*\|^2$ $-\mathbf{w}^*\|^2$ (prop. of proj.) $-\mathbf{w}^* \|^2$ $\gamma^2 + \eta^2 G^2 T \Big].$

Application

- Application: $\min_{\mathbf{w} \in C} f(\mathbf{w})$.
 - fixed loss function: $f_t = f$.
 - guarantee for average weight vector:



 $\left(\begin{array}{c} 2 \\ 51 \end{array}\right)$

 $=\frac{R_T(\mathcal{A})}{\Gamma_T}=O\left(\frac{1}{\sqrt{T}}\right).$ thus, convergence in $O\left(\frac{1}{\epsilon^2}\right)$.

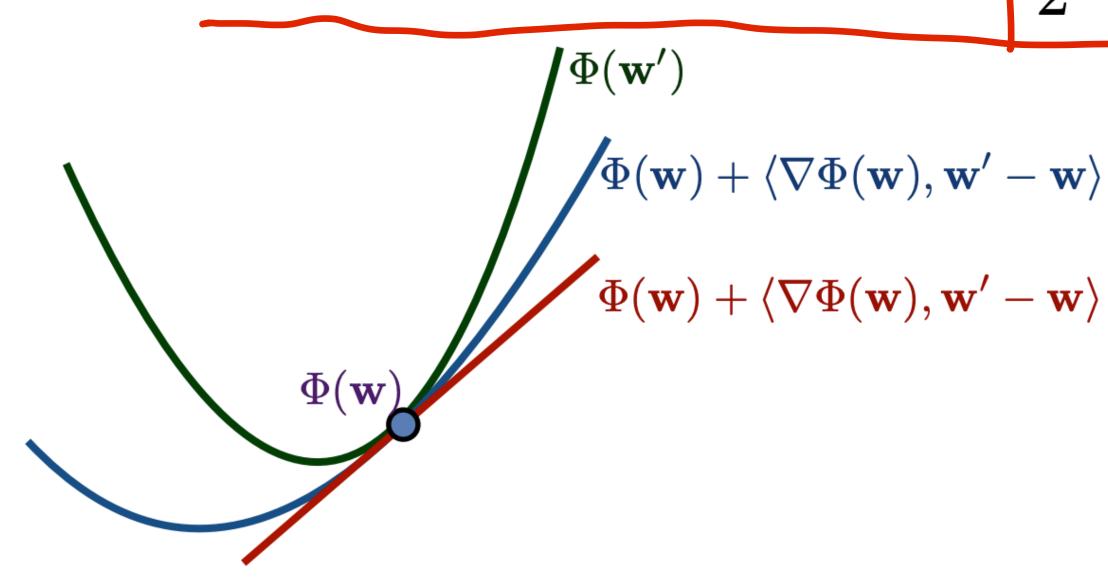
Strongly Convex Loss Functions [Hazan et al., 2007]

- \blacksquare Theorem: assume that the functions f_t are α -strongly convex and $\|\delta f_t(\mathbf{w})\| \leq G$ for all \mathbf{w} and $\delta f_t \in \partial f_t(\mathbf{w})$. Then, the regret of online projected sub-gradient descent (PSGD) with parameter $\eta_{t+1} = \frac{1}{\alpha t}$ is bounded as follows
 - $R_T(PSGD) \leq$

$$\frac{G^2}{2\alpha}(1+\log T).$$

Strong Convexity

- **Definition:** a convex function Φ defined over a convex set Cis α -strongly convex with respect to norm $\|\cdot\|$ if the function $\mathbf{w}\mapsto \Phi(\mathbf{w})-rac{lpha}{2}\|\mathbf{w}\|^2$ is convex or, equivalently,
 - for all \mathbf{w}, \mathbf{w}' in C and $\delta \Phi(\mathbf{w}) \in \partial \Phi$ $\Phi(\mathbf{w}') \ge \Phi(\mathbf{w}) + \delta \Phi(\mathbf{w}) \cdot (\mathbf{w}' - \mathbf{v})$



$$\hat{\mathbf{v}}(\mathbf{w}),$$

 $\mathbf{w}) + \frac{\alpha}{2} \|\mathbf{w}' - \mathbf{w}\|^2.$

$$\mathbf{w}), \mathbf{w}' - \mathbf{w} \rangle + rac{lpha}{2} \|\mathbf{w}' - \mathbf{w}\|^2$$

$$\begin{aligned} &\mathsf{Proof} \\ R_{T}(\mathrm{PSGD}) \\ &= \sum_{t=1}^{T} \left(f_{t}(\mathbf{w}_{t}) - f_{t}(\mathbf{w}^{*}) \right) \\ &\leq \sum_{t=1}^{T} \delta f_{t}(\mathbf{w}_{t}) \cdot (\mathbf{w}_{t} - \mathbf{w}^{*}) \left(-\frac{\alpha}{2} \| \mathbf{w}_{t} - \mathbf{w}^{*} \|^{2} \right) \\ &= \sum_{t=1}^{T} \frac{1}{2\eta_{t+1}} \left[\| \mathbf{w}_{t} - \mathbf{w}^{*} \|^{2} + \eta_{t+1}^{2} \| \delta f_{t}(\mathbf{w}_{t}) \|^{2} - \| \mathbf{w}_{t} - \eta_{t+1} \delta f_{t}(\mathbf{w}_{t}) - \mathbf{w}^{*} \|^{2} \right] - \frac{\alpha}{2} \| \mathbf{w}_{t} - \mathbf{w}^{*} \|^{2} \\ &\leq \sum_{t=1}^{T} \frac{1}{2\eta_{t+1}} \left[\| \mathbf{w}_{t} - \mathbf{w}^{*} \|^{2} + \eta_{t+1}^{2} G^{2} - \| \mathbf{w}_{t+1} - \mathbf{w}^{*} \|^{2} \right] \left(-\frac{\alpha}{2} \| \mathbf{w}_{t} - \mathbf{w}^{*} \|^{2} \right) \\ &\leq \frac{\alpha}{2} \sum_{t=1}^{T} \left[(t-1) \| \mathbf{w}_{t} - \mathbf{w}^{*} \|^{2} - t \| \mathbf{w}_{t+1} - \mathbf{w}^{*} \|^{2} \right] + \frac{G^{2}}{2\alpha} \sum_{t=1}^{T} \frac{1}{t} \\ &\qquad (\text{def. of } \eta_{t+1}) \\ &= \frac{\alpha}{2} \left[-T \| \mathbf{w}_{T+1} - \mathbf{w}^{*} \|^{2} \right] + \frac{G^{2}}{2\alpha} \sum_{t=1}^{T} \frac{1}{t} \\ &\leq \frac{G^{2}}{2\alpha} \sum_{t=1}^{T} \frac{1}{t} \leq \frac{G^{2}}{2\alpha} (1 + \log T). \end{aligned}$$

 $\log 1$

ty)

Exponentiated Gradient (EG) [Kivinen and Warmuth, 1997]

- Convex set: simplex $C = {\mathbf{w} \in \mathbb{R}^N : \mathbf{w} \ge 0 \land ||\mathbf{w}||_1 = 1}.$
- Algorithm:
 - $\mathbf{w}_1 = \left(\frac{1}{N}, \ldots, \frac{1}{N}\right)^\top$. • $\mathbf{w}_{t+1,i} = rac{\mathbf{w}_{t,i} \exp(-\eta \left[\delta f_t(\mathbf{w}_t)\right]_i)}{Z_t}$ where
 - $Z_t = \sum_{i=1}^N \mathbf{w}_{t,i} e^{-\eta [\delta f_t(\mathbf{w}_t)]_i}.$

Exponentiated Gradient (EG) [Kivinen and Warmuth, 1997]

- Convex set: simplex $C = \{ \mathbf{w} \in \mathbb{R}^N : \mathbf{w} \ge 0 \land \|\mathbf{w}\|_1 = 1 \}.$
- Algorithm:
 - $\mathbf{w}_1 = \left(\frac{1}{N}, \ldots, \frac{1}{N}\right)^\top$. • $\mathbf{w}_{t+1,i} = rac{\mathbf{w}_{t,i} \exp(-\eta \left[\delta f_t(\mathbf{w}_t)\right]_i)}{Z_t}$ where
 - $Z_t = \sum_{i=1}^N \mathbf{w}_{t,i} e^{-\eta [\delta f_t(\mathbf{w}_t)]_i}.$

 $\frac{1}{f_t(w_t)} = \begin{bmatrix} t \\ t \end{bmatrix} \\ \frac{1}{t} \begin{bmatrix} w_t \\ w_t \end{bmatrix}$ $Sf_{+}(v_{t}) \in (l_{t}, i)_{i=1}^{N}$

When the loss function $f_t(w_t) = l_t \cdot w_t$ takes the linear form, it is multiplicative weight update algorithm.

Regret of EG

Assumption:

- $\|\delta f_t(\mathbf{w}_t)\|_{\infty} \leq G_{\infty}.$
- Theorem: the regret of the Exponentiated Gradient (EG) algorithm is bounded as follows

$$R_T(\mathrm{EG}) \le rac{\log N}{\eta} +$$

Choosing η to minimize the bound gives

$$R_T(\mathrm{EG}) \le 2G_\infty \sqrt{T}$$

$$\frac{\eta G_\infty^2 T}{2}.$$

Regret of EG

- Assumption: $\|\delta f_t(\mathbf{w}_t)\|_{\infty} \leq G_{\infty}$. Theorem: the regret of the Exponentiated Gradient (EG)
- algorithm is bounded as follows

$$R_T(\mathrm{EG}) \le \frac{\log N}{\eta} +$$

Choosing η to minimize the bound gives

$$R_T(\mathrm{EG}) \le 2G_\infty \sqrt{T}$$

 $R_T(PSGD) \leq RG\sqrt{T}.$

 $G = \|Sf_{\ell}(w_{\ell})\|_{2}^{4}$ A U(A)

 $\frac{\eta G_{\infty}^2 T}{\Omega}$ **Comparison between** EG & PSGD In EG, $G_\infty \sim O(1),$ which yields the regret $O(\sqrt{T\log N})$ $T\log N$ In PSGD, $G \sim O(\sqrt{N})$, which yields the regret $O(\sqrt{TN})$

Proof

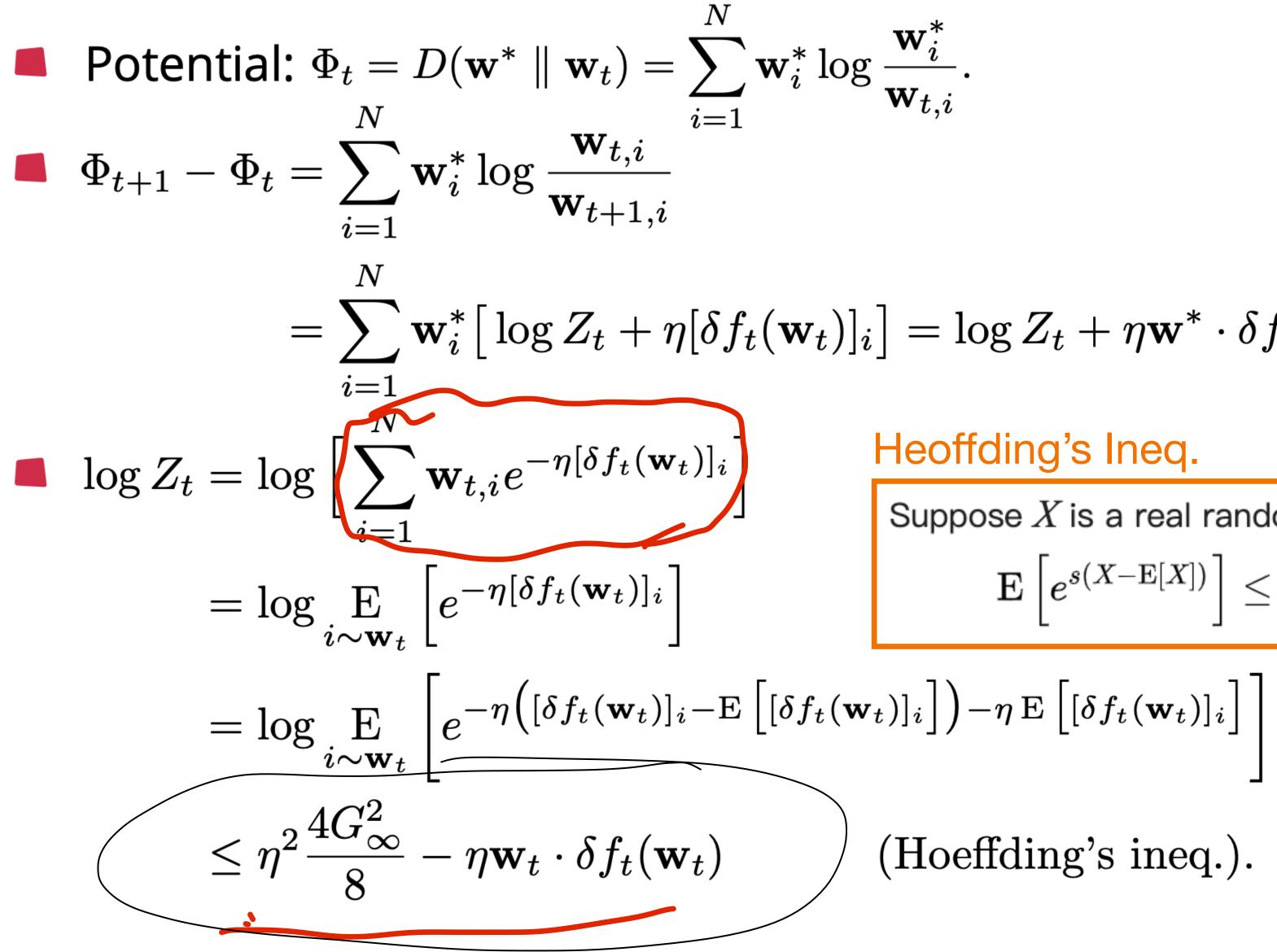
Potential: $\Phi_t = D(\mathbf{w}^* \parallel \mathbf{w}_t) = \sum_{i=1}^N \mathbf{w}_i^* \log \frac{\mathbf{w}_i^*}{\mathbf{w}_{t,i}}.$ $\Phi_{t+1} - \Phi_t = \sum_{i=1}^N \mathbf{w}_i^* \log \frac{\mathbf{w}_{t,i}}{\mathbf{w}_{t+1,i}}.$ N $= \sum \mathbf{w}_i^* \left[\log Z_t + \eta [\delta f_t(\mathbf{w}_t)]_i \right] =$ $\log Z_t = \log \left[\sum_{i=1}^{i=1}^{N} \mathbf{w}_{t,i} e^{-\eta [\delta f_t(\mathbf{w}_t)]_i} \right]$ $= \log \mathop{\mathrm{E}}_{i \sim \mathbf{w}_{t}} \left[e^{-\eta [\delta f_{t}(\mathbf{w}_{t})]_{i}} \right]$ $= \log \mathop{\mathrm{E}}_{i \sim \mathbf{w}_{t}} \left| e^{-\eta \left([\delta f_{t}(\mathbf{w}_{t})]_{i} - \mathrm{E} \left[[\delta f_{t}(\mathbf{w}_{t})]_{i} \right] \right)} \right|$ $\leq \eta^2 \frac{4G_{\infty}^2}{\mathbf{x}} - \eta \mathbf{w}_t \cdot \delta f_t(\mathbf{w}_t) \qquad \text{(Hoeffding's ineq.).}$

$$Ee -g(x - Ex)$$

$$\log Z_t + \eta \mathbf{w}^* \cdot \delta f_t(\mathbf{w}_t).$$
- $\mathcal{Y}[\delta f_t(\mathbf{w}_t)]$

$$\Big]\Big) - \eta \operatorname{E}\left[[\delta f_t(\mathbf{w}_t)]_i \right]^{-1}$$

Proot



$$= \log Z_t + \eta \mathbf{w}^* \cdot \delta f_t(\mathbf{w}_t).$$

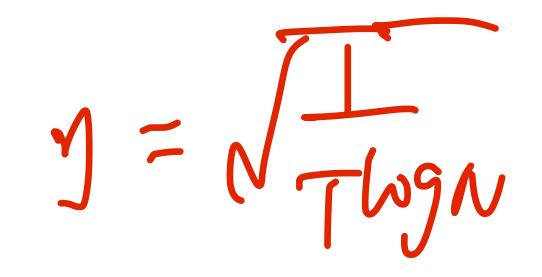
Heoffding's Ineq.

Suppose X is a real random variable such that $P(X \in [a, b]) = 1$. Then $\mathrm{E}\left[e^{s(X-\mathrm{E}[X])}
ight] \leq \exp\Bigl(rac{1}{8}s^2(b-a)^2\Bigr).$ $x = \left[s f_{t}(w_{t}) \right]_{1}^{2}$ $b = G_{\infty} \quad \alpha = -G_{\infty}$ (Hoeffding's ineq.).

Proof

Combining equality and inequality: $\Phi_{t+1} - \Phi_t \le \frac{\eta^2 G_\infty^2}{2} - \eta (\mathbf{w}^* - \mathbf{w}_t) \cdot \delta f_t(\mathbf{w}_t)$ $\Leftrightarrow \eta(\mathbf{w}^* - \mathbf{w}_t) \cdot \delta f_t(\mathbf{w}_t) \le \frac{\eta^2 G_\infty^2}{2} + (\Phi_t - \Phi_{t+1})$ $\Rightarrow \sum_{t=1}^{t} (\mathbf{w}^* - \mathbf{w}_t) \cdot \delta f_t(\mathbf{w}_t) \le \frac{\eta^2 G_\infty^2 T}{2} + \frac{\Phi_1 - \Phi_{T+1}}{n}$ $\Rightarrow \sum_{t=1}^{I} (\mathbf{w}^* - \mathbf{w}_t) \cdot \delta f_t(\mathbf{w}_t) \leq \frac{\eta^* G_{\infty}^2 T}{2} + \frac{\Phi_1}{\eta}.$ $R_T(\mathrm{EG}) = \sum_{t} \left(f_t(\mathbf{w}_t) - f_t(\mathbf{w}^*) \right)$ $\leq \sum \delta f_t(\mathbf{w}_t) \cdot (\mathbf{w}_t - \mathbf{w}^*)$ t=1 $\leq \frac{\eta G_{\infty}^2 T}{2} + \frac{\Phi_1}{\eta} = \frac{\eta G_{\infty}^2 T}{2} + \frac{D(\mathbf{w}^* \parallel \mathbf{w}_1)}{\eta} \leq \frac{\eta G_{\infty}^2 T}{2} + \frac{\log N}{\eta}.$

(Rel. Ent. non-neg.)



Online Mirror Descent (OMD)

- PSGD and EG both special instances of a more general algorithm: Mirror Descent.
- Mirror Descent is based on Bregman divergence:
 - PSGD: $B(\mathbf{w} || \mathbf{w}') = \frac{1}{2} || \mathbf{w} \mathbf{w}' ||_2^2$.
 - EG: unnormalized relative entropy;

$$B(\mathbf{w} \parallel \mathbf{w}') = \sum_{i=1}^{N} \left[w_i \log \left[\frac{w_i}{w'_i} \right] - w_i + w'_i \right].$$

Online Mirror Descent (OMD)

- PSGD and EG both special instances of a more general algorithm: Mirror Descent.
- Mirror Descent is based on Bregman divergence:
 - PSGD: $B(\mathbf{w} \parallel \mathbf{w'}) = \frac{1}{2} \|\mathbf{w} \mathbf{w'}\|_2^2$.
 - EG: unnormalized relative entropy;

$$B(\mathbf{w} \parallel \mathbf{w}') = \sum_{i=1}^{N} \left[w_i \log v_i \right]$$

- $\left|\frac{w_i}{w'_i}\right| w_i + w'_i \right|.$
- Will dive into OMD later. Let's first look at the zeroth-order feedback setting.

Zeroth-order Feedback

Adversarial Bandit Problem

- The optimization space $\mathscr{X} = [n]$ is discrete, and the loss function f_t becomes loss vector $l_t = (l_{t,1}, \dots, l_{t,n})$.
- At each step t, the adversary picks a loss vector l_t .
- The optimizer draws an action $I_t \sim p_t, p_t \in \Delta_n$ is a probability distribution over [n].
- The optimizer only observes the loss value l_{t,I_t} .

Adversarial Bandit Problem

- The optimization space $\mathscr{X} = [n]$ is discrete, and the loss function f_t becomes loss vector $l_t = (l_{t,1}, \dots, l_{t,n})$.
- At each step t, the adversary picks a loss vector l_t .
- The optimizer draws an action $I_t \sim p_t, p_t \in \Delta_n$ is a probability distribution over [n].
- The optimizer only observes the loss value l_{t,I_t} .

Remarks:

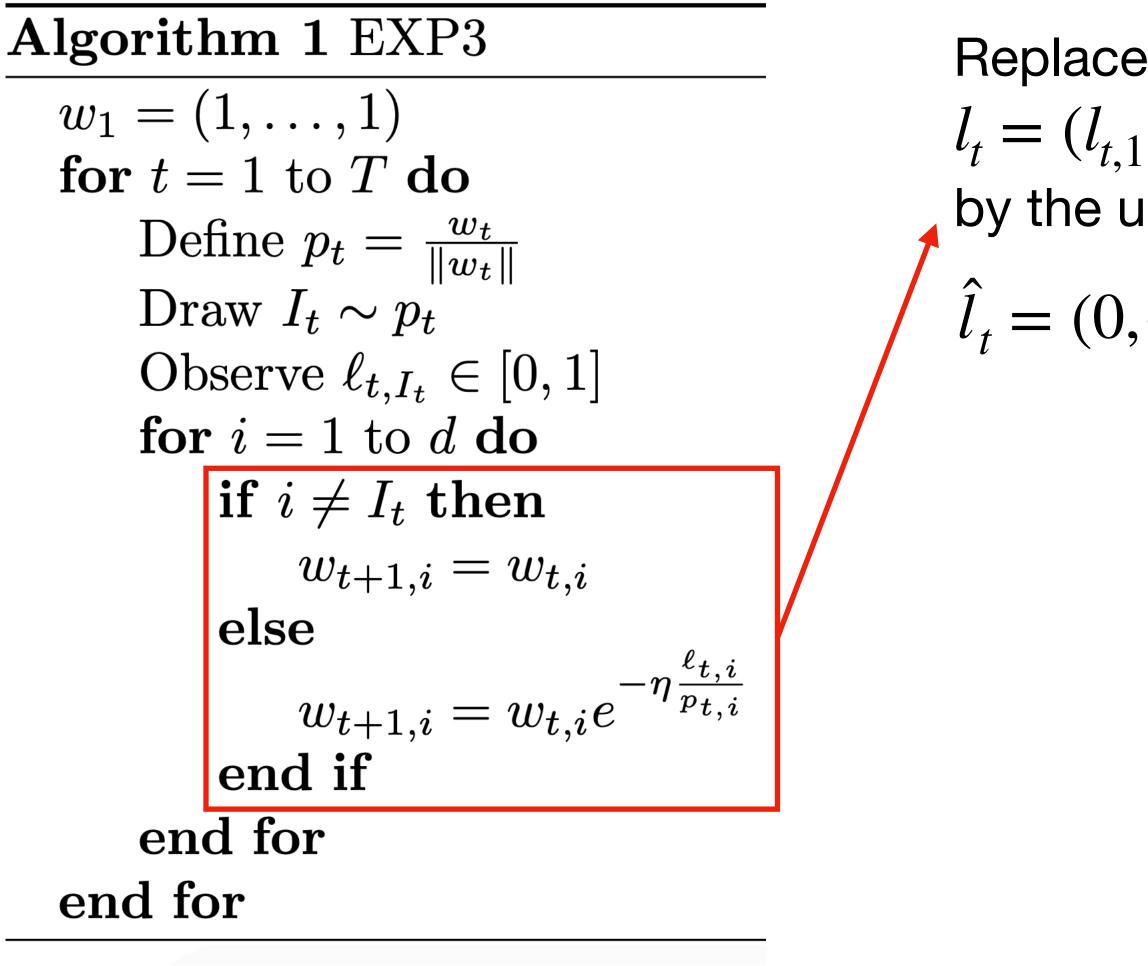
- 1. This is an online convex optimization problem with linear loss function under the zeroth order feedback setting.
- 2. If the optimizer can observe the whole loss vector l_t , this is exactly the online convex optimization setting in EG. Just let $C = \Delta_n$, and $w_t = p_t$, $f_t(w_t) = l_t \cdot w_t$. 3. To achieve no-regret, we need an updated version of EG.

Exponential-weight Algorithm for **Exploration and Exploitation (EXP3)**

Algorithm 1 EXP3

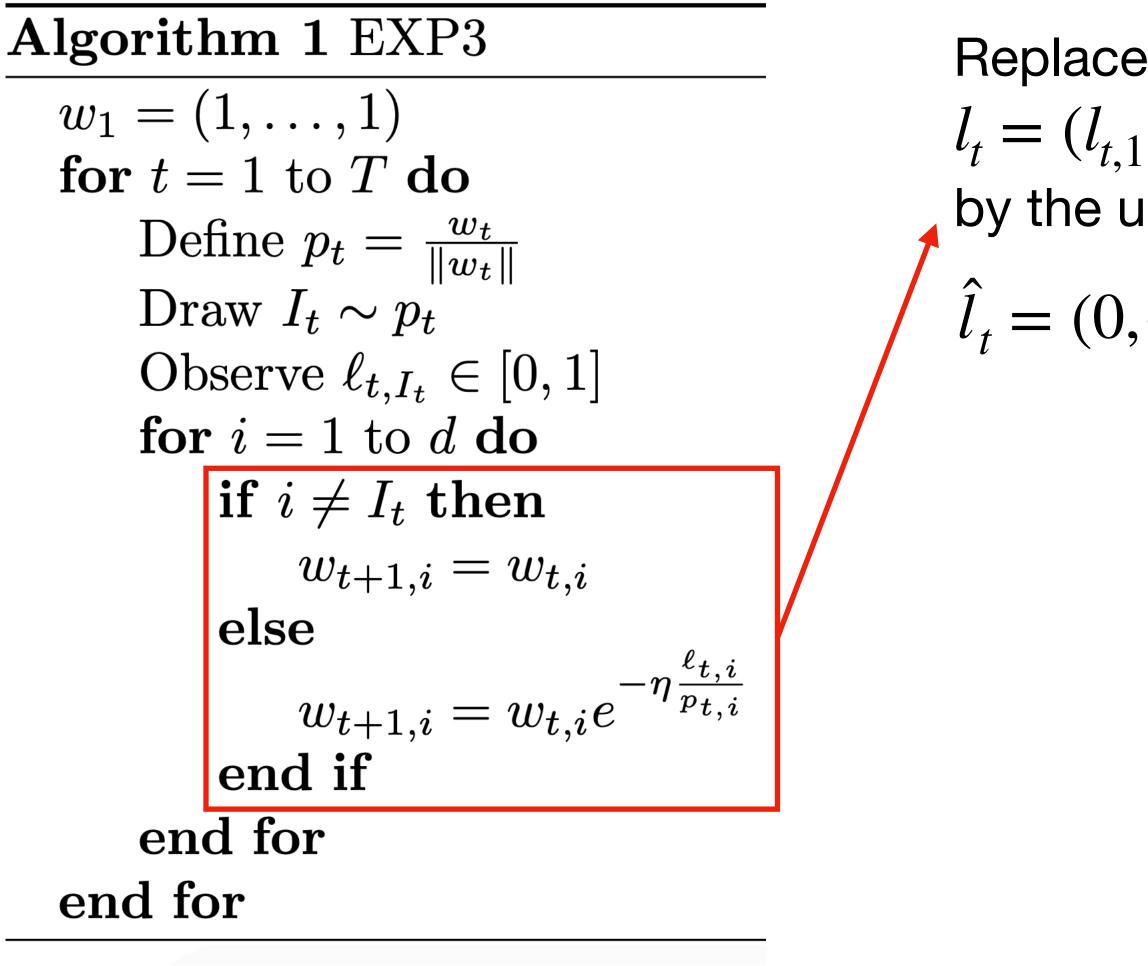
 $w_1 = (1, \ldots, 1)$ for t = 1 to T do Define $p_t = \frac{w_t}{\|w_t\|}$ Draw $I_t \sim p_t$ Observe $\ell_{t,I_t} \in [0,1]$ for i = 1 to d do if $i \neq I_t$ then $w_{t+1,i} = w_{t,i}$ else $w_{t+1,i} = w_{t,i}e^{-\eta \frac{\ell_{t,i}}{p_{t,i}}}$ end if end for end for

Exponential-weight Algorithm for Exploration and Exploitation (EXP3)



Replace the loss vector $l_t = (l_{t,1}, \dots, l_{t,n})$ by the unbiased estimator $\hat{l}_t = (0, \dots, 0, \frac{l_{t,i}}{p_{t,i}}, 0, \dots, 0)$

Exponential-weight Algorithm for Exploration and Exploitation (EXP3)



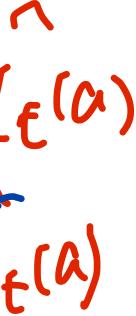
Replace the loss vector $l_t = (l_{t,1}, \dots, l_{t,n})$ by the unbiased estimator $\hat{l}_t = (0, \dots, 0, \frac{l_{t,i}}{p_{t,i}}, 0, \dots, 0)$

Theorem $\mathbb{E}\left[\operatorname{Regret}_{T}(\operatorname{EXP3})\right] \leq \sqrt{2TN\ln N}$

Let
$$\Phi_t = \frac{1}{\eta} \ln(\sum_{a=1}^N \exp(-\eta \sum_{s=1}^t l_t(a)))$$
, we have
 $\Phi_T - \Phi_0 = \sum_{t=1}^T \Phi_t - \Phi_{t-1} = \sum_{t=1}^T \frac{1}{\eta} \ln(\sum_{a=1}^N w_t(a) \exp(-\eta l_t(a)))$.
Therefore, $\Phi_T - \Phi_0 = \sum_{t=1}^T \frac{1}{\eta} \ln\left(\sum_{a=1}^N w_t(a) \exp(-\eta l_t(a))\right)$
 $\leq \sum_{t=1}^T \frac{1}{\eta} \ln\left(\sum_{a=1}^N w_t(a) \left[1 - \eta l_t(a) + \frac{1}{2}\eta^2 l_t(a)^2\right]\right)$
 $\leq \sum_{t=1}^T \frac{1}{\eta} \ln\left(\left[1 - \eta \sum_{a=1}^N w_t(a) l_t(a) + \frac{1}{2}\eta^2 \sum_{a=1}^N w_t(a) l_t(a)^2\right]\right)$
 $\leq \sum_{t=1}^T \frac{1}{\eta} \left[-\eta \sum_{a=1}^N w_t(a) l_t(a) + \frac{1}{2}\eta^2 \sum_{a=1}^N w_t(a) l_t(a)^2\right]$

Let
$$\Phi_t = \frac{1}{\eta} \ln(\sum_{a=1}^N \exp(-\eta \sum_{s=1}^t l_t(a)))$$
, we have
 $\Phi_T - \Phi_0 = \sum_{t=1}^T \Phi_t - \Phi_{t-1} = \sum_{t=1}^T \frac{1}{\eta} \ln(\sum_{a=1}^N w_t(a) \exp(-\eta l_t(a)))$
Therefore, $\Phi_T - \Phi_0 = \sum_{t=1}^T \frac{1}{\eta} \ln\left(\sum_{a=1}^N w_t(a) \exp(-\eta l_t(a))\right)$
 $\leq \sum_{t=1}^T \frac{1}{\eta} \ln\left(\sum_{a=1}^N w_t(a) \left[1 - \eta l_t(a) + \frac{1}{2}\right]$
 $\leq \sum_{t=1}^T \frac{1}{\eta} \ln\left(\left[1 - \eta \sum_{a=1}^N w_t(a) l_t(a) + \frac{1}{2}\right]$
 $\leq \sum_{t=1}^T \frac{1}{\eta} \left[-\eta \sum_{a=1}^N w_t(a) l_t(a) + \frac{1}{2}\eta^2 \sum_{a=1}^N$
 $\leq \sum_{t=1}^T \left[-w_t \cdot l_t\right] + \eta \sum_{a=1}^N w_t(a) l_t(a)^2\right]$

 $E\left[e_{F}p\left(-\frac{y}{y}X\right)\right] \leq e_{F}p\left(-\frac{y}{y}E_{X}\right)$ For any sub-Gaussian r.v. X with zero mean, $(-\eta l_t(a))).$ $\mathbb{E}[\exp(sX)] \le \exp\left(\frac{s^2 \mathbb{E}X^2}{2}\right)$ $\frac{1}{2}\eta^2 l_t(a)^2$ $\frac{1}{2}\eta^2 \sum_{a=1} w_t(a) l_t(a)^2 \bigg]$ $F[exp(-y]_{t(\alpha)}) + \int Sw_{t(\alpha)}$ $\sum_{a=1}^{\infty} w_t(a) l_t(a)^2 \Big]$



Proof
Note that
$$\Phi_0 = \frac{1}{\eta} \ln(\sum_{a=1}^N 1) = \frac{1}{\eta} \ln N$$
, we have
 $\Phi_T - \Phi_0 \leq -\sum_{t=1}^T w_t \cdot l_t + \eta \sum_{t=1}^T \sum_{a=1}^N w_t(a) l_t(a)^2$
 $\Phi_T - \frac{1}{\eta} \ln N \leq$
 $\Phi_T + \sum_{t=1}^T w_t \cdot l_t \leq \frac{1}{\eta} \ln N + \eta \sum_{t=1}^T \sum_{a=1}^N w_t(a) l_t(a)^2$
Also note that $\Phi_T \geq -\sum_{t=1}^T l_t(a)$, we have
 $\sum_{t=1}^T w_t \cdot l_t + \Phi_T \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^t \sum_{a=1}^N w_t(a) l_t(a)^2$

$$\sum_{t=1}^{r} \boldsymbol{w}_t \cdot \boldsymbol{l}_t - L_T(a) \leq$$

Replace l_t with \hat{l}_t , we obtain

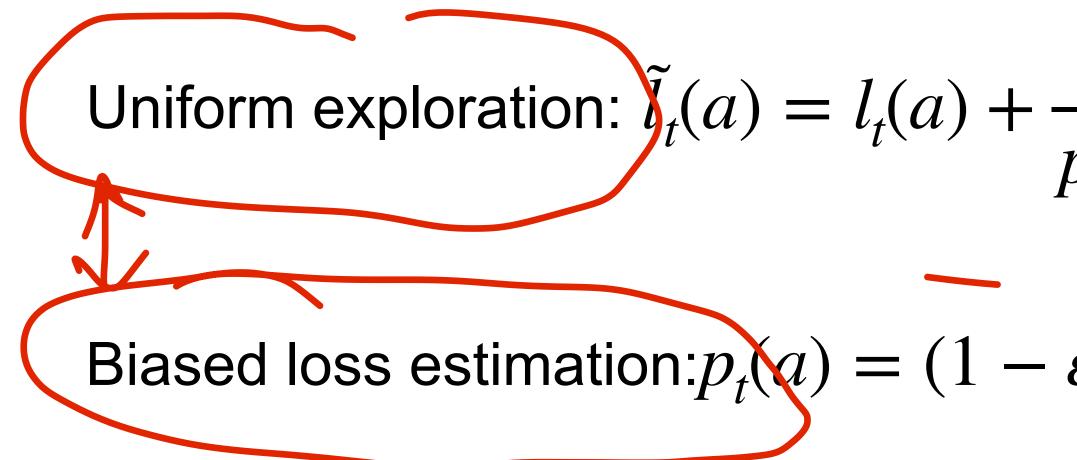
$$\mathbb{E}\Big[\sum_{t=1}^{T} \boldsymbol{w}_{t} \cdot \hat{\boldsymbol{l}}_{t} - \min_{a} L_{T}(a)\Big] \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{N} \mathbb{E}\Big[\boldsymbol{w}_{t} \\ \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{N} \mathbb{E}\Big[\boldsymbol{w}_{t} \\ \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{N} l_{i}(a)^{2} \\ \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{N} 1 \\ \leq \frac{\ln N}{\eta} + \eta TN \\ \mathbb{E}\Big[\operatorname{Regret}_{T}(\mathrm{EXP3})\Big] \leq \sqrt{2}$$

 $V_{av}\left[\left(\left(a\right)\right)^{2}\right]^{2}$ \mathbf{O} Л lt (a) $2_{f}(a)$ $P_{f}(a)$ $\left| (a) \cdot \hat{l}_t(a)^2 \right|$ $\frac{1}{-1} l_i(a)^2$ ٠ (a)

$2TN \ln N$

Variants of EXP3

- The regret bound for EXP3 only holds in expectation (Pseudo Regret). To derive the high-probability bound for the true regret, we have two variants of EXP3:
 - EXP3-P [Auer, 2001] 1.



EXP3 with Implicit Exploration (EXP-IX) [Neu, 2015] 2.

Biased loss estimation: $\tilde{l}_t(a) = \frac{l_t(a)}{p_t(a)}$

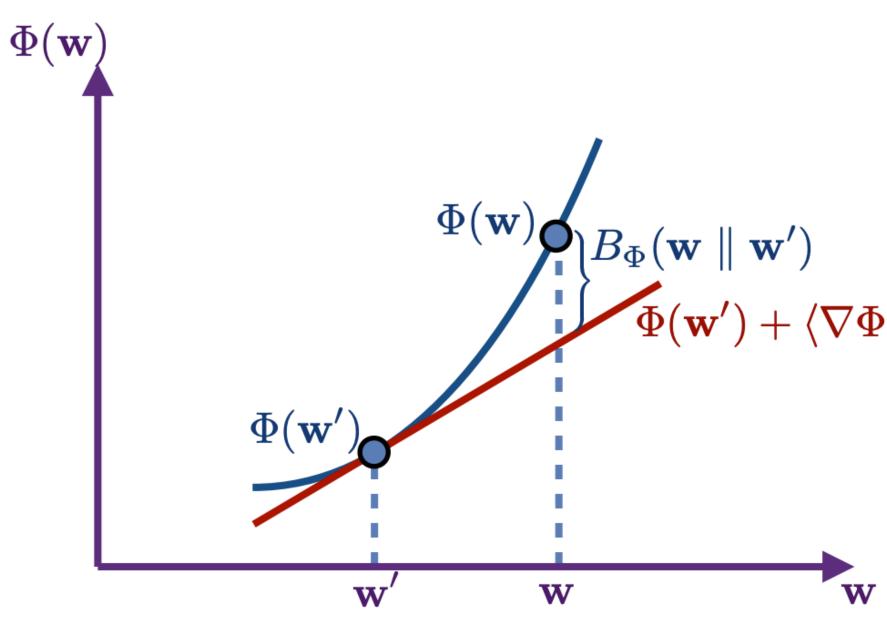
$$\frac{\beta}{p_t(a)}, \beta \sim \sqrt{\frac{\log NT/\delta}{NT}}$$
$$\varepsilon w_t(a) + \frac{\varepsilon}{N}, \varepsilon \sim \sqrt{\frac{N\log R}{T}}$$

$$\frac{(a)}{1+\varepsilon_t} \|_{\{I_t=a\}}, \varepsilon_t \sim \sqrt{\frac{\log N}{Nt}}.$$

OMD revisited

- Bregman Divergence
- **Definition:** Φ convex differentiable over open convex set C. The Bregman divergence associated to Φ is defined by

 $B_{\Phi}(\mathbf{w} \parallel \mathbf{w}') = \Phi(\mathbf{w}) - \Phi(\mathbf{w}') - \langle \nabla \mathbf{w}' \rangle = \Phi(\mathbf{w}') - \nabla \Phi(\mathbf{w}') - \langle \nabla \mathbf{w}' \rangle = \Phi(\mathbf{w}') - \Phi(\mathbf{w}') - \nabla \Phi(\mathbf{w}') - \nabla \Phi(\mathbf{w}') = \Phi(\mathbf{w}') - \Phi(\mathbf{w}') - \nabla \Phi(\mathbf{w}') = \Phi(\mathbf{w}') - \Phi(\mathbf{w}') = \Phi(\mathbf{w}') - \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') + \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}') + \Phi(\mathbf{w}') + \Phi(\mathbf{w}') + \Phi(\mathbf{w}') = \Phi(\mathbf{w}') + \Phi(\mathbf{w}'$



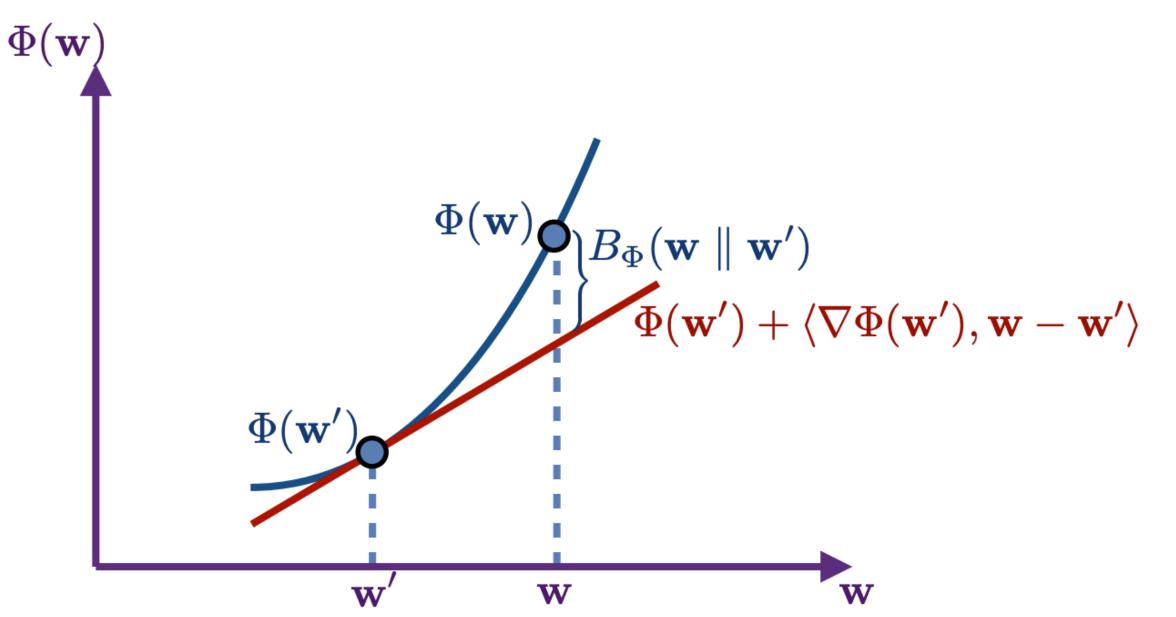
$$7\Phi(\mathbf{w}'), \mathbf{w} - \mathbf{w}' \rangle.$$

$$(\mathbf{w}'), \mathbf{w} - \mathbf{w}'
angle$$

OMD revisited

- Bregman Divergence
- **Definition:** Φ convex differentiable over open convex set C. The Bregman divergence associated to Φ is defined by

 $B_{\Phi}(\mathbf{w} \parallel \mathbf{w}') = \Phi(\mathbf{w}) - \Phi(\mathbf{w}') - \langle \nabla \mathbf{w}' \rangle$



$$\nabla \Phi(\mathbf{w}'), \mathbf{w} - \mathbf{w}'
angle.$$

Given any convex function Φ on C, B_{Φ} is a 'metric' associated with Φ .

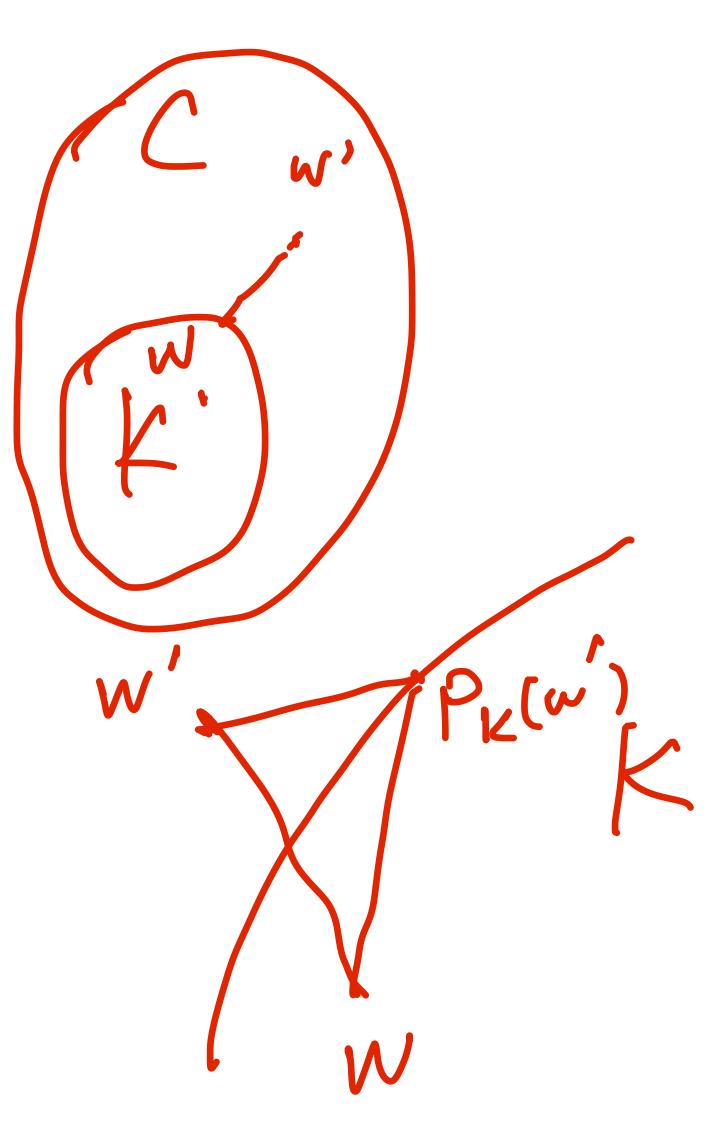
Properties of Bregman Divergence

- Proposition: the following properties hold for a Bregman divergence.
 - non-negativity: $\forall \mathbf{w}, \mathbf{w}' \in C, \ B_{\Phi}(\mathbf{w} \parallel \mathbf{w}') \geq 0.$
 - linearity: $B_{\alpha\Phi+\beta\Psi} = \alpha B_{\Phi} + \beta B_{\Psi}$.
 - projection: for any closed convex set $K \subseteq \overline{C}$, the projection of B_{Φ} -projection of \mathbf{w}' overK is unique:

$$P_K(\mathbf{w}') = \operatorname*{argmin}_{\mathbf{w} \in K} B_F(\mathbf{w})$$

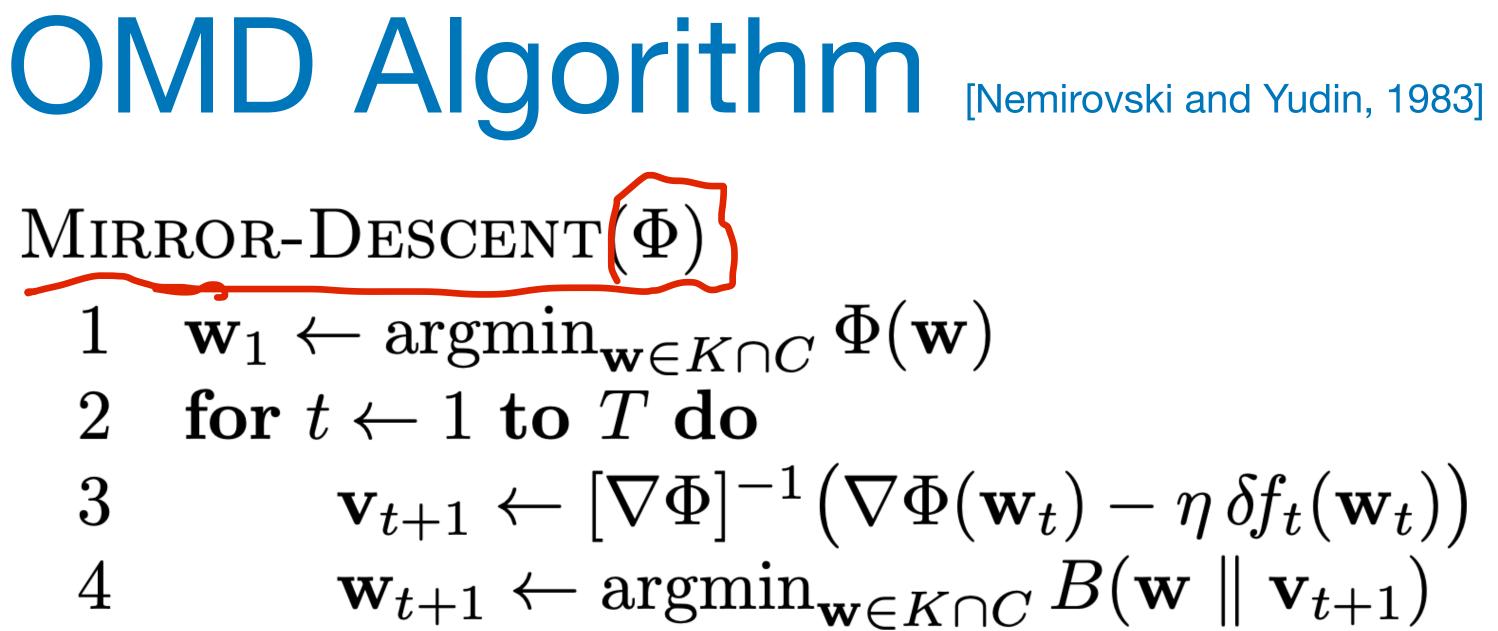
- Triangular identity: $(\nabla \Phi(\mathbf{w}) - \nabla \Phi(\mathbf{v})) \cdot (\mathbf{w} - \mathbf{u}) = B(\mathbf{u} \parallel \mathbf{w}) + B(\mathbf{w} \parallel \mathbf{v}) - B(\mathbf{u} \parallel \mathbf{v}).$
- Pythagorean theorem: $B_{\Phi}(\mathbf{w} \parallel \mathbf{w}') \ge B_{\Phi}(\mathbf{w} \parallel P_K(\mathbf{w}')) + B_{\Phi}(P_K(\mathbf{w}') \parallel \mathbf{w}').$

 $\parallel \mathbf{w}').$

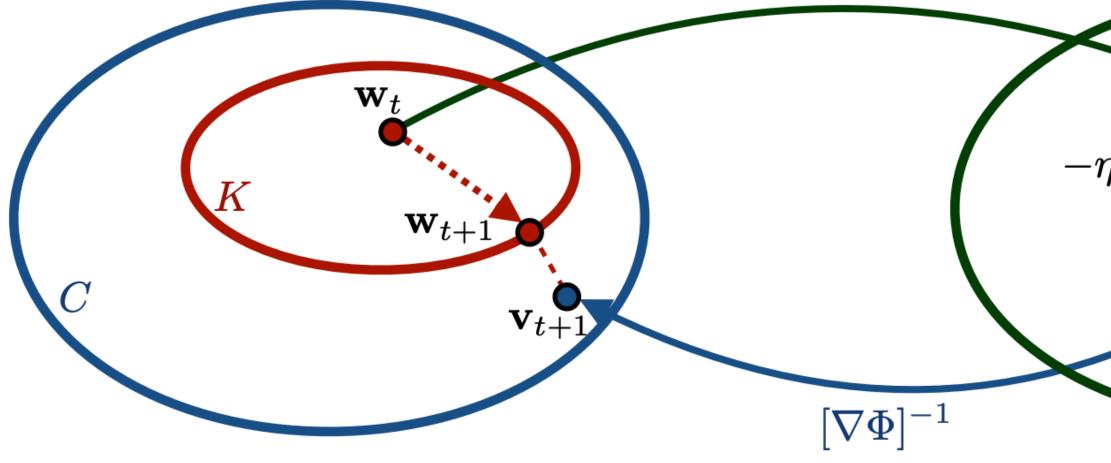


Legendre Type Functions [Rockafellar, 1970]

- **Definition:** a real-valued function Φ defined over a nonempty open convex set C is said to be of Legendre type if it is proper closed convex and differentiable over C and if one of the following equivalent conditions holds: • $\nabla \Phi$ is one-to-one mapping from C to $\nabla \Phi(C)$. • $\lim_{\mathbf{w}\to\partial C} \|\nabla\Phi(\mathbf{w})\| = +\infty. \quad (\overline{\Phi}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2 \quad \nabla \overline{\Phi}(\mathbf{x}) = \chi.$ $\overline{P}(x) = \sum x_i \log x_i, \nabla \overline{P}(x) = \log x + i$ $\nabla \overline{\Phi}(x) = \exp(x-1)$ xeAn



 $\nabla \Phi$



 $\nabla \phi \gg W_{t}$ $V_{tH} \leftarrow \nabla \Phi (V_{t+1})$ $Q(\underline{u}) \neq avgm(r)$ W_{t+1} $\left(\varphi(x) - \chi y \right)$ $\nabla \Phi(\mathbf{w}_t)$ $-\eta \, \delta f_t(\mathbf{w}_t$ $abla
abla \Phi(\mathbf{v}_{t+1})$ $E^{(f2)} = cwgmh B_{\overline{p}}(X||w|)$

Regret of OMD

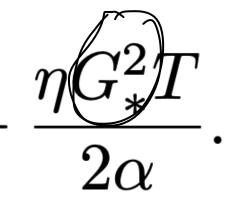
Theorem: let C be a non-empty open convex set and $K \subset C$ a compact convex set. Assume that $\Phi: C \to \mathbb{R}$ is of Legendre type and α -strongly convex with respect to $\|\cdot\|$ and f_t s convex and G_* -Lipschitz with respect to $\|\cdot\|$. Then, the regret of Mirror Descent can be bounded as follows:

$$R_T(\mathrm{MD}) \le rac{B(\mathbf{w}^* \parallel \mathbf{w}_1)}{\eta}$$
 -

Choosing η to minimize the bound gives 2T

$$R_T(\mathrm{MD}) \leq D_\Phi G_* \sqrt{\frac{-1}{\alpha}}$$

with $B(\mathbf{w}^* \parallel \mathbf{w}_1) \leq D_{\Phi}^2$.



$$\overline{\Phi(x)} = \sum \chi_i \log \chi_i$$

$$\leq \overline{\Phi(x)} + \nabla \overline{\Phi(x)} [x-x] + \zeta'$$

$\Gamma \otimes$

$$\begin{aligned} &R_{T}(\mathrm{MD}) \\ &= \sum_{t=1}^{T} \left(f_{t}(\mathbf{w}_{t}) - f_{t}(\mathbf{w}^{*}) \right) \\ &\leq \sum_{t=1}^{T} \delta f_{t}(\mathbf{w}_{t}) \cdot (\mathbf{w}_{t} - \mathbf{w}^{*}) \\ &= \frac{1}{\eta} \sum_{t=1}^{T} \left[\nabla \Phi(\mathbf{w}_{t}) - \nabla \Phi(\mathbf{v}_{t+1}) \right] \cdot (\mathbf{w}_{t} - \mathbf{w}^{*}) \\ &= \frac{1}{\eta} \sum_{t=1}^{T} \left[B(\mathbf{w}^{*} \parallel \mathbf{w}_{t}) - B(\mathbf{w}^{*} \parallel \mathbf{v}_{t+1}) + B(\mathbf{w}_{t} \parallel \mathbf{v}_{t+1}) \right] \\ &\leq \frac{1}{\eta} \sum_{t=1}^{T} \left[B(\mathbf{w}^{*} \parallel \mathbf{w}_{t}) - B(\mathbf{w}^{*} \parallel \mathbf{w}_{t+1}) - B(\mathbf{w}_{t+1} \parallel \mathbf{v}_{t+1}) + B(\mathbf{w}_{t} \parallel \mathbf{v}_{t+1}) \right] \\ &= \frac{1}{\eta} \left[B(\mathbf{w}^{*} \parallel \mathbf{w}_{t}) - B(\mathbf{w}^{*} \parallel \mathbf{w}_{t+1}) \right] + \frac{1}{\eta} \sum_{t=1}^{T} \left[- B(\mathbf{w}_{t+1} \parallel \mathbf{v}_{t+1}) \right] \\ &\leq \frac{B(\mathbf{w}^{*} \parallel \mathbf{w}_{1})}{\eta} + \frac{1}{\eta} \sum_{t=1}^{T} \left[B(\mathbf{w}_{t} \parallel \mathbf{v}_{t+1}) - B(\mathbf{w}_{t+1} \parallel \mathbf{v}_{t+1}) \right]. \end{aligned}$$

(def. of subgrad.)

(def. of \mathbf{v}_t)

(Breg. div. Identity)

 $(\mathbf{w}_t \parallel \mathbf{v}_{t+1})]$ (Pythagorean ineq.)

 $_{+1}) + B(\mathbf{w}_t \parallel \mathbf{v}_{t+1}) \Big]$

$$\begin{split} & \left[B(\mathbf{w}_t \parallel \mathbf{v}_{t+1}) - B(\mathbf{w}_{t+1} \parallel \mathbf{v}_{t+1}) \right] \\ &= \Phi(\mathbf{w}_t) - \Phi(\mathbf{w}_{t+1}) - \nabla \Phi(\mathbf{v}_{t+1}) \cdot (\mathbf{w}_t - \mathbf{w}_{t+1}) \\ &\leq \left(\nabla \Phi(\mathbf{w}_t) - \nabla \Phi(\mathbf{v}_{t+1}) \right) \cdot (\mathbf{w}_t - \mathbf{w}_{t+1}) - \frac{\alpha}{2} \| \mathbf{w}_t - \mathbf{v}_{t+1} \|^2 \\ &= -\eta \, \delta f_t(\mathbf{w}_t) \cdot (\mathbf{w}_t - \mathbf{w}_{t+1}) - \frac{\alpha}{2} \| \mathbf{w}_t - \mathbf{w}_{t+1} \|^2 \\ &\leq \eta G_* \| \mathbf{w}_t - \mathbf{w}_{t+1} \| - \frac{\alpha}{2} \| \mathbf{w}_t - \mathbf{w}_{t+1} \|^2 \\ &\leq \frac{(\eta G_*)^2}{2\alpha}. \end{split}$$

follows:

 $R_T(MD)$

 $\|\mathbf{w}_{t+1}\|^2$ (α -strong convexity) (def. of \mathbf{v}_{t+1}) $(G_*-\text{Lipschitzness})$ (max. of 2nd deg. eq.)

Theorem: assume additionally that f_t s are σ -strongly convex with respect to Φ . Then, the regret of Mirror Descent with parameter $\eta_{t+1} = \frac{1}{\sigma t}$ can be bounded as

$$\leq \frac{G_*^2}{2\sigma\alpha}(1+\log T).$$

Equivalent Description of OMD

Mirror-Descent(Φ)

- 1 $\mathbf{w}_1 \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} \Phi(\mathbf{w})$
- 2 for $t \leftarrow 1$ to (T 1) do
- 3 $\mathbf{w}_{t+1} \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} \delta f_t(\mathbf{w})$

lineari

Proof:

- $\mathbf{w}_{t+1} = \underset{\mathbf{w}\in K\cap C}{\operatorname{argmin}} \ B(\mathbf{w} \parallel \mathbf{v}_{t+1})$
 - $= \underset{\mathbf{w}\in K\cap C}{\operatorname{argmin}} \ \Phi(\mathbf{w}) \nabla \Phi(\mathbf{v}_{t+1}) \cdot \mathbf{w}$
 - $= \underset{\mathbf{w}\in K\cap C}{\operatorname{argmin}} \Phi(\mathbf{w}) \left(\nabla \Phi(\mathbf{w}_t) \eta \, \delta f_t(\mathbf{w}_t)\right)$
 - $= \underset{\mathbf{w}\in K\cap C}{\operatorname{argmin}} \ \eta \, \delta f_t(\mathbf{w}_t) \cdot \mathbf{w} + B(\mathbf{w} \parallel \mathbf{w}_t).$

$$\mathbf{w}_t) \cdot \mathbf{w} + rac{1}{\eta} B(\mathbf{w} \parallel \mathbf{w}_t)$$

zation of f_t regularization

(def. of Breg. div.)

$$)) \cdot \mathbf{w} \quad (\text{def. of } \mathbf{v}_{t+1})$$

(def. of Breg. div.)

Dual Averaging (DA) [Louditski and Nesterov, 2010]

DUAL-AVERAGING(Φ)

1
$$\mathbf{v}_{1} \leftarrow 0$$

2 $\mathbf{w}_{1} \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} B(\mathbf{w} \parallel \mathbf{v}_{1})$
3 for $t \leftarrow 1$ to T do
4 $\mathbf{v}_{t+1} \leftarrow [\nabla \Phi]^{-1} (\nabla \Phi(\mathbf{v}_{t}) - \eta \, \delta f_{t}(\mathbf{w}_{t}))$
5 $\mathbf{w}_{t+1} \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} B(\mathbf{w} \parallel \mathbf{v}_{t+1})$

Dual Averaging (DA) [Louditski and Nesterov, 2010]

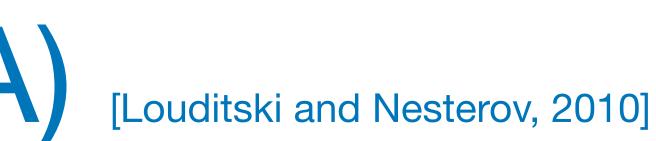
DUAL-AVERAGING(Φ)

$$1 \quad \mathbf{v}_1 \leftarrow 0$$

- $\mathbf{w}_1 \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} B(\mathbf{w} \parallel \mathbf{v}_1)$
- for $t \leftarrow 1$ to T do 3
- $\mathbf{v}_{t+1} \leftarrow [\nabla \Phi]^{-1} \left(\nabla \Phi(\mathbf{v}_t) \eta \, \delta f_t(\mathbf{w}_t) \right) \\ \mathbf{w}_{t+1} \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} B(\mathbf{w} \parallel \mathbf{v}_{t+1})$ 4
- 5

A simple modification makes a big difference MIRROR-DESCENT(Φ)

- 1 $\mathbf{w}_1 \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} \Phi(\mathbf{w})$
- for $t \leftarrow 1$ to T do 2
- $\mathbf{v}_{t+1} \leftarrow [\nabla \Phi]^{-1} \left(\nabla \Phi(\mathbf{w}_t) \eta \, \delta f_t(\mathbf{w}_t) \right)$ 3
- $\mathbf{w}_{t+1} \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} \overline{B}(\mathbf{w} \parallel \mathbf{v}_{t+1})$ 4



 $\nabla \overline{\Phi}(v_E) = \sum_{i=1}^{n} \overline{\sum} i = i$

Dual Averaging (DA)

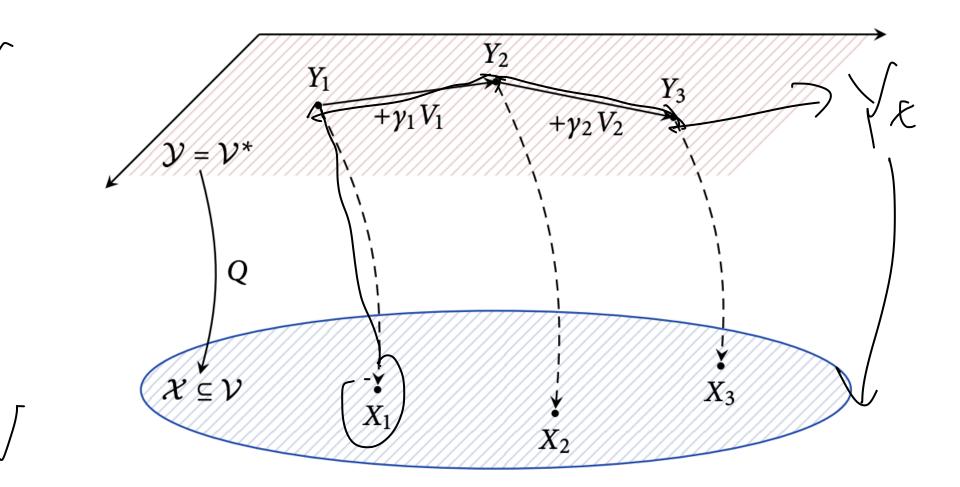
DUAL-AVERAGING(Φ)

$$1 \quad \mathbf{v}_1 \leftarrow 0$$

- $\mathbf{w}_1 \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} B(\mathbf{w} \parallel \mathbf{v}_1)$
- for $t \leftarrow 1$ to T do 3
- $\mathbf{v}_{t+1} \leftarrow [\nabla \Phi]^{-1} \left(\nabla \Phi(\mathbf{v}_t) \eta \, \delta f_t(\mathbf{w}_t) \right) \\ \mathbf{w}_{t+1} \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} B(\mathbf{w} \parallel \mathbf{v}_{t+1})$ 4
- 5

MIRROR-DESCENT(Φ)

- $\mathbf{w}_1 \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} \Phi(\mathbf{w})$
- for $t \leftarrow 1$ to T do 2 $\mathbf{v}_{t+1} \leftarrow [\nabla \Phi]^{-1} \left(\nabla \Phi(\mathbf{w}_t) - \eta \, \delta f_t(\mathbf{w}_t) \right)$ **റ** 3
- $\mathbf{w}_{t+1} \leftarrow \operatorname{argmin}_{\mathbf{w} \in K \cap C} B(\mathbf{w} \parallel \mathbf{v}_{t+1})$ 4



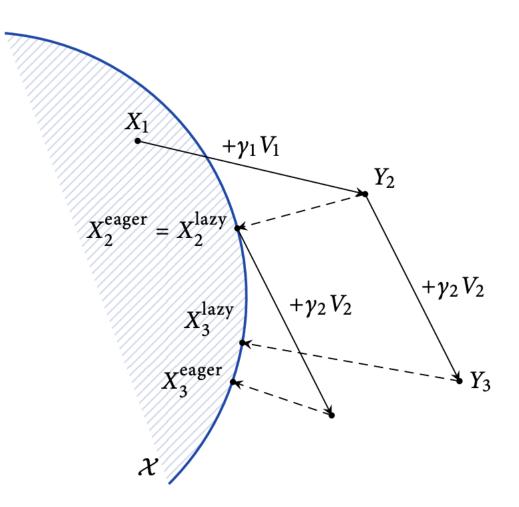


Figure 2.4: Lazy vs. eager gradient descent.

Equivalent Description of DA

Equivalent form:

 $\mathbf{w}_{t+1} = \operatorname{argmin} B(\mathbf{w} \parallel \mathbf{v}_{t+1})$ $\mathbf{w} \in K \cap C$

> = argmin $\Phi(\mathbf{w}) - \nabla \Phi(\mathbf{v}_{t+1}) \cdot \mathbf{w}$ $\mathbf{w} \in K \cap C$

= argmin $\Phi(\mathbf{w}) - (\nabla \Phi(\mathbf{v}_t) - \eta \, \delta f_t(\mathbf{w}_t)) \cdot \mathbf{w}$ (def. of \mathbf{v}_{t+1}) $\mathbf{w} \in K \cap C$

$$= \underset{\mathbf{w}\in K\cap C}{\operatorname{argmin}} \eta \sum_{s=1} \delta f_t(\mathbf{w}_s) + \Phi(\mathbf{w}).$$

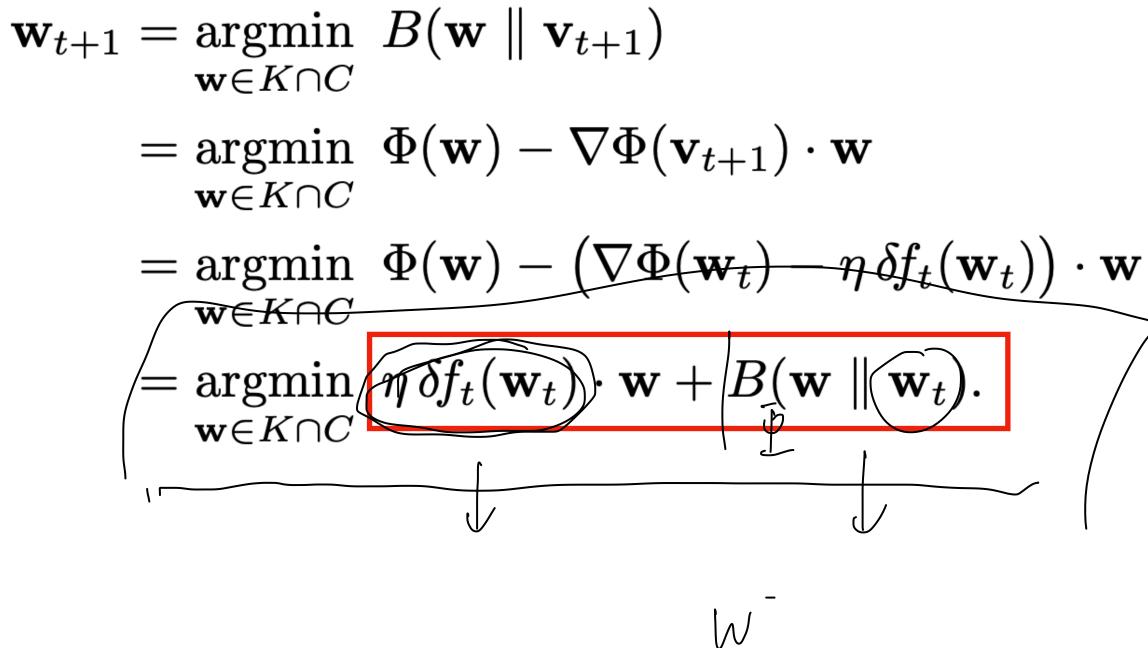
In particular, for linear losses, $f_t(\mathbf{w}) = \mathbf{a}_t \cdot \mathbf{w}$, Dual Averaging coincides with regularized FL: $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in K \cap C} \sum_{s=1}^{\infty} \mathbf{a}_s \cdot \mathbf{w} + \frac{1}{\eta} \Phi(\mathbf{w}).$

(def. of Breg. div.)

(recurrence)

Comparison between OMD and DA

OMD



DA

$$\mathbf{w}_{t+1} = \underset{\mathbf{w} \in K \cap C}{\operatorname{argmin}} \quad B(\mathbf{w} \parallel \mathbf{v}_{t+1})$$

$$= \underset{\mathbf{w} \in K \cap C}{\operatorname{argmin}} \quad \Phi(\mathbf{w}) - \nabla \Phi(\mathbf{v}_{t+1}) \cdot \mathbf{w}$$

$$= \underset{\mathbf{w} \in K \cap C}{\operatorname{argmin}} \quad \Phi(\mathbf{w}) - \left(\nabla \Phi(\mathbf{v}_t) - \eta \, \delta f_t(\mathbf{w}_t)\right)$$

$$= \underset{\mathbf{w} \in K \cap C}{\operatorname{argmin}} \quad \eta \sum_{s=1}^t \delta f_t(\mathbf{w}_s) + \Phi(\mathbf{w}).$$

Regret of DA

Theorem: under the same assumptions as for MD, the following holds for the regret of Dual Averaging,

$$R_T(\mathrm{DA}) \le \frac{\Phi(\mathbf{w}^*) - \Phi(\mathbf{w}_1)}{\eta} + \frac{2\eta G_*^2 T}{\alpha}$$

Choosing η to minimize the bound gives

$$R_T(\mathrm{DA}) \le 2D_{\Phi}G_*\sqrt{\frac{2T}{lpha}},$$

with $\Phi(\mathbf{w}^*) - \Phi(\mathbf{w}_1) \leq D_{\Phi}^2$.

Summary

- Online Convex Optimization
 - 1. Full information feedback (FTRL)
 - 2. First-order feedback
 - A. OPSD/EG as incarnations of OMD
 - B. From OMD to DA
 - 3. Zeroth-order feedback

(adversarial bandit problem)

- C. For pseudo-regret, EXP3 as a modification of EG.
- D. For true regret, EXP3-P, EXP3-IX.

