
Fan Yao, University of Virginia

Online Convex Optimization
An overview of algorithms and techniques



Outline
•Problem Set-up 

•Follow the Regularized Leader (FTRL) 

•Online Projected Sub-gradient Descent (PSGD)   

•Exponentiated gradient (EG) 

•EXP-3 and it’s variants 

•Online Mirror Descent (OMD) 

•Dual Averaging (DA)



Set-Up
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Set-Up

Online Convex Optimization Problem

Remarks: 
1. In addition to convexity, 

Lipschitz continuity is 
often assumed for  . 

2. It is standard convex 
optimization if all  
takes the same form. 

3. It is also common to 
use  to refer to the 
loss function. We will 
use the notations

 
interchangeably.  

ft

ft

lt

lt(xt) ↔ ft(wt)



Feedback Assumptions
• Full information            Given  , optimizer can evaluate    

• Bandit information         

- First order feedback   Given  , optimizer can evaluate  

- Zeroth order feedback   Given  , optimizer can only evaluate 

ft ft(w), ∀w ∈ C

ft ft(wt), ∇ft(wt)

ft ft(wt)
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- Zeroth order feedback   Given  , optimizer can only evaluate 

ft ft(w), ∀w ∈ C
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Under different feedback assumptions, we are interested in developing no-
regret learning algorithms, i.e.,  

.RT(𝒜) = o(T)



Full Information Feedback



Follow the Leader (FTL)
• In the full information feedback setting, FTL could be a plausible choice: 

xt+1 ∈ arg min
x∈C

t

∑
s=1

ls(x) . (FTL update rule)
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Follow the Leader (FTL)
• In the full information feedback setting, FTL could be a plausible choice: 

xt+1 ∈ arg min
x∈C

t

∑
s=1

ls(x) . (FTL update rule)

• However, FTL has O(T) regret even for linear loss functions:

• FTL is too aggressive. Need to impose restrictions on  to avoid jiggling.{xt}



Follow the Regularized Leader (FTRL)
• Solution: introducing a regularization term :  h(x)

xt+1 ∈ arg min
x∈C {

t

∑
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ls(x) +
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Follow the Regularized Leader (FTRL)
• Solution: introducing a regularization term :  h(x)

xt+1 ∈ arg min
x∈C {

t

∑
s=1

ls(x) +
1
γ

h(x)} . (FTRL update rule)

•   is continuous and strongly convex, i.e.,  

for all .

h(x) ∃K > 0,s . t .

λ ∈ [0,1], x, x′ ∈ C



Regret of FTRL [Shalev-Shwartz, 2007]

• If  is continuous and strongly convex, and each  is convex and Lipschitz 
continuous with universal Lipschitz constant ,  is 

the depth of  over . Then, the regret of FTRL can be bounded by 

h(x) lt
L H = max

x∈C
h(x) − min

x∈C
h(x)

h C

RT(FTRL) ≤ 2L (H/K)T .
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• If  is continuous and strongly convex, and each  is convex and Lipschitz 
continuous with universal Lipschitz constant ,  is 

the depth of  over . Then, the regret of FTRL can be bounded by 

h(x) lt
L H = max

x∈C
h(x) − min

x∈C
h(x)

h C

RT(FTRL) ≤ 2L (H/K)T .

Remarks: 

1. FTL and FTRL are closely related to the learning policies known in economics and game 

theory as fictitious play (FP) and smooth fictitious play (SFP), respectively. These policies 
correspond to playing a best response (resp. regularized or smooth best response) to the 
empirical history of play of one’s opponents.


2. Our assumptions: the optimizer has full information access to the loss functions, and the 
minimization sub-problem can be solved efficiently.



First-order Feedback



Online Projected Sub-gradient Descent (PSGD)   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The sub-gradient  at  is the set of 
all the vector  such that

δf(x0) x = x0
c

f(x0) − f(x) ≤ c(x0 − x) .



Online Projected Sub-gradient Descent (PSGD)   

The sub-gradient  at  is the set of 
all the vector  such that

δf(x0) x = x0
c

f(x0) − f(x) ≤ c(x0 − x) .In almost all cases, the projection function 
in PSGD is the Euclidean projector

ΠC(x) = arg min
x′ ∈C

∥x′ − x∥2.



Regret of PSGD [Zinkevich, 2009]



Regret of PSGD [Zinkevich, 2009]

The same  bound as FTRLO( T)



Proof



Application



Strongly Convex Loss Functions [Hazan et al., 2007]



Strong Convexity



Proof



Exponentiated Gradient (EG) [Kivinen and Warmuth, 1997]



Exponentiated Gradient (EG) [Kivinen and Warmuth, 1997]

When the loss function    
takes the linear form, it is multiplicative 
weight update algorithm. 

ft(wt) = lt ⋅ wt



Regret of EG



Regret of EG

Comparison between 
EG & PSGD

In PSGD, , 

which yields the regret  

G ∼ O( N)
O( TN)

In EG, , 

which yields the regret  

G∞ ∼ O(1)
O( T log N)



Proof



Proof

Heoffding’s Ineq.



Proof



Online Mirror Descent (OMD)



Online Mirror Descent (OMD)

Will dive into OMD later. Let’s first look at the zeroth-order feedback setting. 



Zeroth-order Feedback



Adversarial Bandit Problem
• The optimization space  is discrete, and the loss function  
becomes loss vector  . 

• At each step  , the adversary picks a loss vector  . 
• The optimizer draws an action  is a probability 
distribution over . 

• The optimizer only observes the loss value .

𝒳 = [n] ft
lt = (lt,1, ⋯, lt,n)

t lt
It ∼ pt, pt ∈ Δn

[n]
lt,It



Adversarial Bandit Problem
• The optimization space  is discrete, and the loss function  
becomes loss vector  . 

• At each step  , the adversary picks a loss vector  . 
• The optimizer draws an action  is a probability 
distribution over . 

• The optimizer only observes the loss value .

𝒳 = [n] ft
lt = (lt,1, ⋯, lt,n)

t lt
It ∼ pt, pt ∈ Δn

[n]
lt,It

Remarks:

1. This is an online convex optimization problem with linear loss function under the zeroth 

order feedback setting.

2. If the optimizer can observe the whole loss vector , this is exactly the online convex 

optimization setting in EG. Just let , and  . 

3. To achieve no-regret, we need an updated version of EG.

lt
C = Δn wt = pt, ft(wt) = lt ⋅ wt



Exponential-weight Algorithm for 
Exploration and Exploitation (EXP3)
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Replace the loss vector




by the unbiased estimator

lt = (lt,1, ⋯, lt,n)

̂lt = (0,⋯,0,
lt,i
pt,i

,0,⋯,0)
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Theorem



Proof
Let  we have 




Therefore, 

Φt =
1
η

ln(
N

∑
a=1

exp(−η
t

∑
s=1

lt(a))),

ΦT − Φ0 =
T

∑
t=1

Φt − Φt−1 =
T

∑
t=1

1
η

ln(
N

∑
a=1

wt(a)exp(−ηlt(a))) .
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Let  we have 




Therefore, 

Φt =
1
η

ln(
N

∑
a=1

exp(−η
t

∑
s=1

lt(a))),

ΦT − Φ0 =
T

∑
t=1

Φt − Φt−1 =
T

∑
t=1

1
η

ln(
N

∑
a=1

wt(a)exp(−ηlt(a))) .

For any sub-Gaussian r.v.  with zero mean, 
X

𝔼[exp(sX)] ≤ exp( s2𝔼X2

2 ) .



Proof
Note that  we haveΦ0 =

1
η

ln(
N

∑
a=1

1) =
1
η

ln N,

Also note that , we haveΦT ≥ −
T

∑
t=1

lt(a)



Proof
Replace  with  , we obtainlt ̂lt

Set , we have η =
ln N
TN



Variants of EXP3
•  The regret bound for EXP3 only holds in expectation (Pseudo Regret). To derive 

the high-probability bound for the true regret, we have two variants of EXP3: 

1.  EXP3-P [Auer, 2001] 

Uniform exploration:  

Biased loss estimation:  

2. EXP3 with Implicit Exploration (EXP-IX) [Neu, 2015] 

Biased loss estimation:  

l̃t(a) = lt(a) +
β

pt(a)
, β ∼

log NT/δ
NT

pt(a) = (1 − ε)wt(a) +
ε
N

, ε ∼
N log N

T

l̃t(a) =
lt(a)

pt(a) + εt
𝕀{It=a}, εt ∼

log N
Nt

.



OMD revisited
• Bregman Divergence



OMD revisited
• Bregman Divergence

Given any convex 
function  on , 

 is a ‘metric’ 
associated with . 

Φ C
BΦ

Φ



Properties of Bregman Divergence



Legendre Type Functions [Rockafellar, 1970]



OMD Algorithm [Nemirovski and Yudin, 1983]



Regret of OMD



Proof



Proof



Equivalent Description of OMD



Dual Averaging (DA) [Louditski and Nesterov, 2010]



Dual Averaging (DA) [Louditski and Nesterov, 2010]

A simple modification makes a big difference



Dual Averaging (DA) [Louditski and Nesterov, 2010]



Equivalent Description of DA



Comparison between OMD and DA
DAOMD



Regret of DA



Summary
•Online Convex Optimization 

1. Full information feedback (FTRL) 

2. First-order feedback  

A. OPSD/EG as incarnations of OMD 

B. From OMD to DA 

3. Zeroth-order feedback 

(adversarial bandit problem) 

C. For pseudo-regret, EXP3 as a modification of EG. 

D. For true regret, EXP3-P, EXP3-IX. 


